

R3 OPTIONEERING, CONCEPT DESIGN AND EIAR DEVELOPMENT Workshop "Experience of Reactor Dismantling" INPP

08/11/2018

ONET TECHNOLOGIES AT A GLANCE

NEW CHALLENGES NEED INNOVATIVE TECHNOLOGIES

Nuclear Decommissioning Market is expanding

- New decommissioning challenges are arising
 - Increasing number of reactors to be decommissioned safely
 - Fuel cycle facilities with high levels of hazard to be decreased
 - Reactors damaged by nuclear accidents to be managed
- Cutting technologies must be (re-)invented to
 - Be deployed remotely where human access is impossible
 - Be robust, reliable, flexible and safety compliant
 - Improve decommissioning projects in terms of cost, time and safety

Remote cutting is a mandatory step for any decommissioning project with very high levels of radioactivity

Cutting Key Challenges

- Material thickness
- Cutting speed
- Tool compactness and versatility
- Underwater cutting
- Wear parts replacement
- Secondary waste generated (chips, dust, fumes)

LASER CUTTING INNOVATION

- Laser is widely used in the industry for cutting or welding works
 -> but not in the field of nuclear decommissioning
- High power lasers are now commercially available off the shelf and at reasonable prices
- The French CEA started a R&D program to develop an innovative laser cutting tool for its own decommissioning challenges

KEY BENEFITS OF LASER CUTTING FOR DECOMMISSIONING

•Excellent cutting performance on metallic / ceramic material with a cutting capability of up to 150mm in thickness

•Cleaner than most of other thermal techniques, especially in respect of dust & fumes

•Technique minimizing slag production (secondary waste production)

•Has been paired with a selection of manipulators for various applications in nuclear decommissioning

•Proven performance and long life in highly radioactive environments

6

Laser Cutting Solutions For Nuclear Decommissioning

DECOMMISSIONING OF UP1 DISSOLVERS

ONET has applied CEA developments to the decommissioning of reprocessing plants

UP1 is a French fuel reprocessing plant stopped in 1997
 Two dissolvers were used for continuous dissolution of Fuel to separate Pu from U and FPs
 Fully remote access and operations was requested due to high radiation
 Thicknesses and shapes implied complex cutting operations

Dissolveur A 222.1A		solveur B 222.1B	Cuve 223.10
			DISSOLVER
			Diameter
	1		Height
		b .	Wall thickness
		Par	Max thickness
		12	Mass
			Material
	Cuve 223.1A		Dose Rate

Cuve 223.10				
K	DISSOLVER	DISSOLVER : INITIAL STATE		
	Diameter	: 1.9 m		
-	Height	:3.6 m		
C	Wall thickness	: 12 to 18 mm		
-	Max thickness	:47mm		
-	Mass	: 4600 kg		
	Material	: URANUS 65		
	Dose Rate	: up to 1 Gy/h		

Decommis

sioning Experience

KEY FIGURES 11 metric tons of primary waste 60 metric tons of secondary waste

Remotely controlled Mass : 6 metric tons Size : 2,5 x 1,6 x 4 m Telescopic mast :7m Maestro arm : 100 kg capacity

WASTE EXTRACTION

& CONDITIONING UNIT

Laser cutting system Grinder (emergency) Cameras Nuclear measurement Gripper Maestro Decom. Experience

Remotely controlled Mass : 50 metric tons Size : 8 x 5,5 x 6,5 m Debris transfer and characterization Packaging in primary container (CP) CP characterization CP packaging in final container Extraction out of the unit

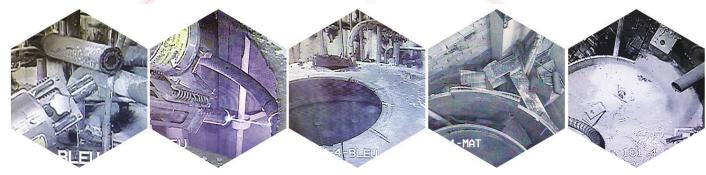
OPERATING FEEDBACK

100 days for laser cutting (including remote operations)

4.5 tons cut by laser (30cm x 30cm pieces)

No safety event during the operations

Laser cutting tool availability > 80%

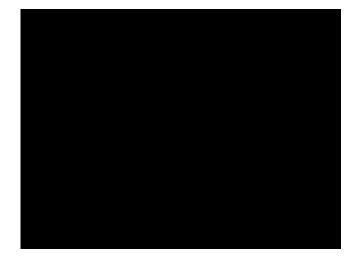

Decommis

sioning

Experience

Cutting tool **robustness** confirmed

6kW laser power limits the process -> 10kW considered as a better option


OPERATING FEEDBACK

VIDEOS OF CUTTING WORKS IN ACTUAL CONDITIONS

Piping

Vessel

Modular vstem

L.DCC

Performance

laser cutting

- ✓100mm cut at 20 mm/min with 10kW laser*
- ✓ Over 150mm achieved with 14kW laser*
- ✓ Multi-layer and various material cutting

Features

✓ Air cooled / only two hoses to feed the tool ✓ MTBF > 1000 h

* Trials done by

✓ Radiation resistance > 1000 Gy

Performance

UNDERWATER CUTTING

Underwater cutting provides great advantages in respect of radioprotection, but laser is not adapted to the environment

➢On-going development with the CEA of a new laser head able to operate both in air and underwater

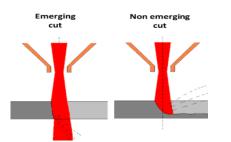
≻A prototype is now operational with good cutting performance :

- Up to 100mm thickness cut under shallow depth of water
- 50 mm thickness cut under 5m of water

Key facts

- Developed to rise to Fukushima Daiichi decommissioning challenges
- Multiple possibilities of application in the field of reactor decommissioning
- Operational tool to be available soon for commercial applications

NON-EMERGING CUTTING (DEEP GOUGING)


In some cases, the material is too thick for the laser to cut through it

✓ This is especially the case of Fukushima Corium, which is expected to be formed of massive blocks

✓On-going development with the CEA of a new laser head able to create kerfs in a massive material so as to remove small blocks

✓ Trials are on-going since 2015 with promising cutting performance :

Up to 40/50mm deep cut in air

Fukushima Corium Retrieval

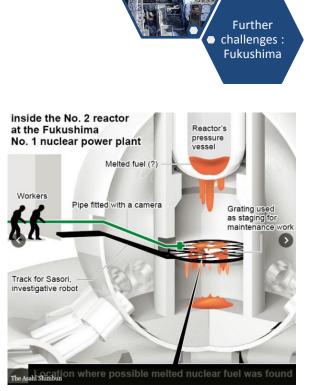
One of the toughest decommissioning challenges in the world is the retrieval of the corium in the damaged Fukushima units

✓ About 900 tons of molten fuel containing various material is expected to be found inside and below the damaged vessels of the reactors

 \checkmark Corium is a very complex material, characterized by an extreme hardness and heterogeneous material contents

✓ Laser cutting technologies are well suited for such cutting works and several systems are under development, through subsidies from the Japanese government (METI)

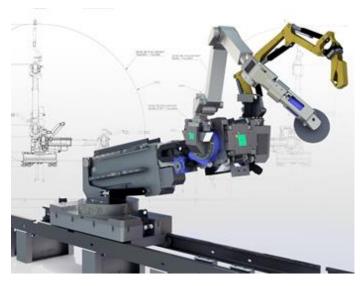
 \checkmark ONET, the CEA and the IRSN are working together to develop such technology including the collection of dust and fumes



Integration of technologies in complex systems applied to the dismantling of highly radioactive components

Dismantling of HLW Pilot Cell n°419 in APM Building n°214 (CEA Marcoule)

✓ Development (2 years)


✓ Design , Manufacture and Testing of remotely-operated carrier for a dualarm robot :

- A dexterous robot
- A manipulator arm
- A telescopic carrier with a hemispherical reach of over 6 m
- ✓ 21 axis of movement
- ✓ Auxiliary carrier for the transport of tools and waste
- ✓ Dismantling of highly radioactive components

Videos

The Model The Trials (Completed this summer)

CONET TECHNOLOGIES

Looking for more?

- •Laser cutting tool
- •Pieces of cut material
- More videos of laser cutting
- •Technical data sheets

Contacts

Mr. Damien ROULET +33 6 42 30 92 48 droulet@onet.fr Commercial Mr. Julien GUILLEMIN +33 6 72 34 61 50 jguillemin@onet.fr