This document is the property of and contains Proprietary Information owned by Westinghouse Electric Company LLC and/or its subcontractors and suppliers. It is transmitted to you in confidence and trust, and you agree to treat this document in strict accordance with the terms and conditions of the agreement under which it was provided to you. Any unauthorized use of this document is prohibited.
Westinghouse Experience in Reactor Vessel Dismantling Projects

Joseph Boucau
Director, GlobD&D/WM Business Development

Gonzalo Medinilla
Project Manager

October 18, 2018
Agenda

• Introduction
• Latest reactor internals segmentation projects across Europe
• Graphite plant dismantling expertise
• Waste storage and disposal facilities
• Conclusions
Agenda

• Introduction
• Latest reactor internals segmentation projects across Europe
• Graphite plant dismantling expertise
• Waste storage and disposal facilities
• Conclusions
Reactor Vessel Internals Segmentation

• Scope: project management, cutting and packaging plan, tooling design, manufacturing & testing, on-site activities (cutting, packaging, handling, cleaning, ...)

• Proven experience since 1985 on all types of reactors: PWR’s, BWR’s, GCR’s, Sodium

• Used all types of cutting tools: PAC, AWJC, MDM, mechanical

More than 30 year experience in dismantling different types of reactors worldwide with various cutting techniques
Latest Segmentation References (Mechanical)

Segmentation Performed

<table>
<thead>
<tr>
<th>Plant</th>
<th>Component</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forsmark 2</td>
<td>Core Shroud</td>
<td>2000</td>
</tr>
<tr>
<td>Forsmark 2</td>
<td>Core Support Grid</td>
<td>2000</td>
</tr>
<tr>
<td>Forsmark 1</td>
<td>Core Shroud</td>
<td>2001</td>
</tr>
<tr>
<td>Forsmark 1</td>
<td>Core Support Grid</td>
<td>2001</td>
</tr>
<tr>
<td>Oskarshamn 2</td>
<td>Core Shroud Cover</td>
<td>2003</td>
</tr>
<tr>
<td>Oskarshamn 2</td>
<td>Core Support Grid</td>
<td>2003</td>
</tr>
<tr>
<td>Oskarshamn 2</td>
<td>Feed Water Spargers</td>
<td>2003</td>
</tr>
<tr>
<td>Oskarshamn 2</td>
<td>Core Spray Riser Pipes</td>
<td>2003</td>
</tr>
<tr>
<td>Oskarshamn 2</td>
<td>Test Channels</td>
<td>2003</td>
</tr>
<tr>
<td>Olkiluoto 2</td>
<td>Steam Separators, 19 pcs</td>
<td>2004</td>
</tr>
<tr>
<td>Olkiluoto 2</td>
<td>Core Support Grid</td>
<td>2004</td>
</tr>
<tr>
<td>Olkiluoto 2</td>
<td>Core Shroud Cover</td>
<td>2004</td>
</tr>
<tr>
<td>Forsmark 3</td>
<td>Core Spray Piping & Support</td>
<td>2005</td>
</tr>
<tr>
<td>Olkiluoto 1</td>
<td>Steam Separators, 19 pcs</td>
<td>2005</td>
</tr>
<tr>
<td>Olkiluoto 1</td>
<td>Core Support Grid</td>
<td>2005</td>
</tr>
<tr>
<td>Olkiluoto 1</td>
<td>Core Shroud Cover</td>
<td>2005</td>
</tr>
</tbody>
</table>

Segmentation Contracted

<table>
<thead>
<tr>
<th>Plant</th>
<th>Component</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chooz A</td>
<td>RPV, Upper & Lower Internals</td>
<td>2016</td>
</tr>
<tr>
<td>Barsebäck 1 & 2</td>
<td>All Reactor Vessel internals</td>
<td>2016</td>
</tr>
<tr>
<td>Philippsburg I</td>
<td>All Reactor Vessel internals</td>
<td>2017</td>
</tr>
<tr>
<td>Neckarwestheim I</td>
<td>Upper & Lower Internals</td>
<td>2017</td>
</tr>
<tr>
<td>Bohunice V1 (2 units)</td>
<td>Full Primary System</td>
<td>2019</td>
</tr>
<tr>
<td>Unterweser</td>
<td>All Reactor Vessel internals</td>
<td>2019</td>
</tr>
<tr>
<td>Grafenrheinfeld</td>
<td>All Reactor Vessel internals</td>
<td>2021</td>
</tr>
<tr>
<td>Gröhnde</td>
<td>All Reactor Vessel internals</td>
<td>2023</td>
</tr>
<tr>
<td>Isar 1</td>
<td>All Reactor Vessel internals</td>
<td>2022</td>
</tr>
<tr>
<td>Isar 2</td>
<td>All Reactor Vessel internals</td>
<td>2024</td>
</tr>
<tr>
<td>Brokdorf</td>
<td>All Reactor Vessel internals</td>
<td>2027</td>
</tr>
</tbody>
</table>

13 reactors currently under contract
José Cabrera plant (Zorita): Segmentation and Packaging of Reactor Internals

- 418 meters of cutting, 432 cut pieces, total weight = 59.5 T

Mock-up testing

Lower internals cutting
Zorita Reactor Vessel removal from the pit and segmentation

- 240 meters of cutting, 140 cut pieces, total weight segmented = 114 T
- Project completed in May 2015
On-going cutting activities

Chooz A: Reactor cave (general View)

Barsebäck 1: Core shroud

Neckarwestheim 1: Segmentation of upper core plate and baffle bolt removal

Bohunice V1: Reactor Shaft Protection Lid Handling
Agenda

• Introduction
• Latest reactor internals segmentation projects across Europe
• Graphite plant dismantling expertise
• Waste storage and disposal facilities
• Conclusions
Fort St Vrain Nuclear Power Plant

- Power: 330 MWe
- Construction: 1968-1976
- Operation: 1976-1989
- Decision for final shutdown: August 29, 1989
- Reasons: technical problems, low capacity factor (15%)
- Consortium W/MK selected for reactor dismantling: June 26, 1990
- Total project duration: 6 years (4 years on site)
Fort St Vrain Reactor Structure

- Penetrations
- Top Head

Core

Core support floor

Steam Generators (12)

Barrel

Top Head cutting into 12 pieces of 110 T

- Removal of 3,754 graphite blocks (313 columns)
- Barrel cutting and metallic structures

Cut into 10 pieces of 270 T

Side walls cutting (1,050 T)

Steam Generator removal

Fort St Vrain reactor
- 32 m high
- 15 m diameter
- Cavity: 9.5 x 23 m
- 2.75 to 4.7 m wall thickness

- Underwater dismantling
- Short planning
- Proven techniques from reactor services
Installation of a Rotary Platform

Main Functions:
- Rotation
- Shielding and confinement
- Handling during reactor dismantling (internals, graphite, concrete side walls)
- Basket filling and waste removal

Dose Rate on Refueling Floor <10 μSv/h
Dose Rate on Work Platform <20μSv/h
Water
Air Inflow
Approx. 12′ (3.6m)
43′=13m
To Reactor Building exhaust
To Reactor Building Exhaust
Graphite Block Removal

5,000 graphite blocks removed
Reactor Dismantling

Top cap: 110 T/piece, total thickness=4.7m

Plasma Arc cutting

Side wall cutting

Heat Exchangers dismantling

Total weight= 270 T
Thickness= 1.5 m
Bugey 1 Reactor Dismantling

- Westinghouse prepared a detailed offer, including a conceptual design for dismantling the Bugey 1 reactor.
- After removal of the top cap, the innovative solution was underwater dismantling by using a floating platform that was naturally lowered while lowering the water level.
- The Westinghouse proven mechanical cutting technology was proposed for dismantling the reactor.
Vandellós I Nuclear Power Plant

- 508 MWe plant located in Vandellós (Spain), operated by Hifrensa
- Carbon dioxide gas cooled reactor based on Saint Laurent A NPP (EDF)
- Shut down on July 31, 1990, following a fire in one of its two turbo-generators in October 1989
Westinghouse Involvement at Vandellós I

1967 - 1972: Construction

1972 - 1989: Operation

1989 - 1998: Planning and Postoperational Activities

1998 - 2002: Decommissioning Level II

2002 - Present: Dormancy

1993-1996: Retrieval of operational waste

Westinghouse involvement

- Engineering and Licensing
- Supervision of D&D activities
- Engineering support and Level III Concept
Westinghouse activities at Vandellós I

- **1994 to 1997:** Graphite silos retrieval (together with other partners):
 - Civil design
 - Integration
 - Works supervision
 - Licensing documentation

- **1992 to 1997:** Decommissioning Plan and licensing documentation
 - Decommissioning plan
 - Licensing documentation
 - Environmental impact report
 - Application for the Euratom Art. 37
 - Engineering project for works license
 - Health and Safety plan
 - Project scheduling

- **1998 till 2003:** Level 2 dismantling
 - Works supervision
 - Licensing support
 - On-site engineering support

- **2003 till now:** Care and Maintenance
 - Systems update and as built documentation
 - Surveillance
 - Licensing support and update of licensing documentation
 - Site Restoration Plan
 - Preparatory activities for Level 3 dismantling
Preparatory activities for Level 3 dismantling

- Optioneering, based on:
 - Caisson characterization
 - Activation calculation model
 - Model calibration with sampling results
 - Integrated model for level 3
 - Structural
 - Activity inventory
 - Level 3 design

- Optioneering: three stage process
Optioneering for Level 3

1st stage:

- Multi-attribute qualitative analysis of five alternatives (wet, dry top/lateral/bottom openings, ex-vessel wet cutting)
2nd stage: quantitative assessment of 2 selected alternatives (top opening dry, and wet)

- Alternatives activities list
- Identification of differentiating or exclusive activities
- Quantitative assessment
- Several cutting techniques
Selected: dry alternative (top opening):

- Dry takes slightly longer and is a bit more expensive than wet
- Operational doses are smaller in dry (use of teleoperated tools)
- Secondary wastes are higher in wet
- Uncertainties and accident risks are higher in wet
Optioneering for Level 3: conceptual design

Clearance 79%

LILW 4%
VLLW 8%
HLW 9%
Agenda

• Introduction
• Latest reactor internals segmentation projects across Europe
• Graphite plant dismantling expertise
• Waste storage and disposal facilities
• Conclusions
Westinghouse Experience in Interim Waste storage and Disposal facilities

- **Centralized Interim Storage for SNF, Spain**
- **Comanche Peak** SNF storage facility, USA
- **El Cabrill** LILW Repository, Spain

- Detailed facility design, licensing support, safety analysis report
- Engineering and construction for a mile long heavy haul road and on-site SNF storage facility at the two unit PWR located in Texas
- Design, licensing, construction supervision and operational support
Conclusions

- Westinghouse brings more than 30 years of proven experience in reactor dismantling on different types of reactors (PWR’s, BWR’s, GCR’s, Sodium).
- Westinghouse has currently on-going segmentation contracts on 13 reactors in Europe.
- Westinghouse has dismantled the first graphite plant (Fort St Vrain) and continues to be involved in other similar reactors (e.g. Vandellós I).
- Westinghouse has developed skills for performing optioneering studies and selecting the optimum dismantling scenario.
- Westinghouse has also a deep knowledge in designing interim waste storage and disposal facilities.
- Westinghouse is used to collaborate with local partners.
Thank You for your Attention… Any Questions?