This document is the property of and contains Proprietary Information owned by Westinghouse Electric Company LLC and/or its subcontractors and suppliers. It is transmitted to you in confidence and trust, and you agree to treat this document in strict accordance with the terms and conditions of the agreement under which it was provided to you. Any unauthorized use of this document is prohibited.

Westinghouse Experience in Reactor Vessel Dismantling Projects

Joseph Boucau Director, GlobD&D/WM Business Development

Gonzalo Medinilla Project Manager

October 18, 2018

Agenda

- Introduction
- Latest reactor internals segmentation projects across Europe
- Graphite plant dismantling expertise
- Waste storage and disposal facilities
- Conclusions

Agenda

- Introduction
- Latest reactor internals segmentation projects across Europe
- Graphite plant dismantling expertise
- Waste storage and disposal facilities
- Conclusions

Reactor Vessel Internals Segmentation

- Scope: project management, cutting and packaging plan, tooling design, manufacturing & testing, onsite activities (cutting, packaging, handling, cleaning, ...)
- Proven experience since 1985 on all types of reactors: PWR's, BWR's, GCR's, Sodium
- Used all types of cutting tools: PAC, AWJC, MDM, mechanical

More than 30 year experience in dismantling different types of reactors worldwide with various cutting techniques

Latest Segmentation References (Mechanical)

Segmentation Performed

V		
Forsmark 2	Core Shroud	2000
• Forsmark 2	Core Support Grid	2000
Forsmark 1	Core Shroud	2001
Forsmark 1	Core Support Grid	2001
Oskarshamn 2	Core Shroud Cover	2003
Oskarshamn 2	Core Support Grid	2003
Oskarshamn 2	Feed Water Spargers	2003
Oskarshamn 2	Core Spray Riser Pipes	2003
Oskarshamn 2	Test Channels	2003
Oskarshamn 2	Core Shroud Cover	2004
 Oskarshamn 1 	Core Support Grid	2004
 Oskarshamn 1 	Core Spray Riser Pipes	2004
Oskarshamn 1	Test Channels	2004
 Olkiluoto 2 	Steam Separators, 19 pcs	2004
 Olkiluoto 2 	Core Support Grid	2004
 Olkiluoto 2 	Core Shroud Cover	2004
Forsmark 3	Core Spray Piping & Sur	2005
• Citiluoto 1	Stear Separators, 1	2005
• Olkiluo.	Co Gri	
Olkiluoto 1	2 reactors ourrently	-5
	3 reactors currently	у
	nder contract	
• Olkilu-		.~
CIKIluoto 2		
• Forsmark 3	Con Shan s	20.
Forsmark 2	Steal yer	2010
Forsmark 2	Core Viroud Cover	2010

Segmentation Performed

	٠	Forsmark 3	Control Rod Shafts, 62pcs	2010		
	٠	Forsmark 1	Steam Dryer	2011		
	٠	Forsmark 1	Core Shroud Cover	2011		
	٠	Forsmark 3	Core Shroud Cover	2012		
	٠	Grand Gulf	Steam Dryer	2012		
	٠	Olkiluoto 2	Steam Dryer	2013		
	٠	Oskarshamn 3	Control Rod Shafts, 27 pcs	2013		
	٠	Studsvik R2	Iodine Rigs	2013		
<		José Cabrera	Upper & Lower Internals	2013		
	٠	Oskarshamn 3	Core Shroud Cover	2013		
	٠	Oskarshamn 3	Steam Dryer	2014		
	٠	Peach Bottom 2	Steam Dryer	2014		
<		José Cabrera	Reactor Pressure Vessel	2015		
	٠	Peach Bottom 3	Steam Dryer	2015		
	٠	Mühleberg	Fuel channels	2016		
Segmentation Contracted						
		Chooz A	RPV, Upper & Lower Internals	2016		
	٠	Barsebäck 1 & 2	All Reactor Vessel internals	2016		
	٠	Philippsburg I	All Reactor Vessel internals	2017		
	•	Neckarwestheim I	Upper & Lower Internals	2017		
	 Bohunice V1 (2 units) Full Primary System 			2019		
	٠	Unterweser	All Reactor Vessel internals	2019		
	Ŭ	Grafenrheinfeld	All Reactor Vessel internals	2021		
	٠	Gröhnde	All Reactor Vessel internals	2023		
	٠	Isar 1	All Reactor Vessel internals	2022		
	٠	Isar 2	All Reactor Vessel internals	2024		
	٠	Brokdorf	All Reactor Vessel internals	2027		

© 2018 Westinghouse Electric Company LLC. All Rights Reserved.

Lower internals cutting

José Cabrera plant (Zorita): Segmentation and Packaging of Reactor Internals

Mock-up testing

 418 meters of cutting, 432 cut pieces, total weight = 59.5 T

Westinghouse

© 2018 Westinghouse Electric Company LLC. All Rights Reserved.

Zorita Reactor Vessel removal from the pit and segmentation

- 240 meters of cutting, 140 cut pieces, total weight segmented = 114 T
 - Project completed in May 2015

On-going cutting activities

Chooz A: Reactor cave (general View)

Barsebäck 1: Core shroud

Bohunice V1:Reactor Shaft Protection Lid Handling

The Designation of

Neckarwestheim 1: Segmentation of upper core plate and baffle bolt removal

Agenda

- Introduction
- Latest reactor internals segmentation projects across Europe
- Graphite plant dismantling expertise
- Waste storage and disposal facilities
- Conclusions

Fort St Vrain Nuclear Power Plant

- Power: 330 MWe
- Construction: 1968-1976
- Operation: 1976-1989
- Decision for final shutdown: August 29, 1989
- Reasons: technical problems, low capacity factor (15%)
- Consortium W/MK selected for reactor dismantling: June 26, 1990
- Total project duration: 6 years (4 years on site)

Fort St Vrain Reactor Structure

Installation of a Rotary Platform

Graphite Block Removal

Baskets

Reactor Dismantling

Top cap: 110 T/pie piece, total thickness=4.7m

Plasma Arc cutting

Side wall cutting

Total weight= 270 T Thickness= 1.5 m

Bugey 1 Reactor Dismantling

Westinghouse

- Westinghouse prepared a detailed offer, including a conceptual design for dismantling the Bugey 1 reactor.
- After removal of the top cap, the innovative solution was underwater dismantling by using a floating platform that was naturally lowered while lowering the water level.
- The Westinghouse proven mechanical cutting technology was proposed for dismantling the reactor.

Vandellós I Nuclear Power Plant

- 508 MWe plant located in Vandellós (Spain), operated by Hifrensa
- Carbon dioxide gas cooled reactor based on Saint Laurent A NPP (EDF)
- Shut down on July 31, 1990, following a fire in one of its two turbo-generators in October 1989

Westinghouse Involvement at Vandellós I

Westinghouse activities at Vandellós I

- 1994 to 1997: Graphite silos retrieval (together with other partners):
 - Civil design
 - > Integration
 - Works supervision
 - Licensing documentation
- 1992 to 1997: Decommissioning Plan and licensing documentation
 - Decommissioning plan
 - Licensing documentation

 - Environmental impact report
 Application for the Euratom Art. 37
 - Engineering project for works license
 - Health and Safety plan
 - Project scheduling
- 1998 till 2003: Level 2 dismantling
 - > Works supervision
 - Licensing support
 - On-site engineering support
- 2003 till now: Care and Maintenance
 - Systems update and as built documentation
 - Surveillance
 - Licensing support and update of licensing documentation Site Restoration Plan

 - Preparatory activities for Level 3 dismantling

Preparatory activities for Level 3 dismantling

> Optioneering, based on:

- Caisson characterization
- Activation calculation model
- Model calibration with sampling results
- Integrated model for level 3
 - Structural
 - Activity inventory
 - Level 3 design

> Optioneering: three stage process

Optioneering for Level 3

1st stage:

Multi-attribute qualitative analysis of five alternatives (wet, dry top/lateral/bottom openings, ex-vessel wet cutting)

Optioneering for Level 3

2nd stage: quantitative assessment of 2 selected alternatives (top opening dry, and wet)

- Alternatives activities list
- Identification of differentiating or exclusive activities
- Quantitative asessment
- Several cutting techniques

Optioneering for Level 3

Selected: dry alternative (top opening):

- Dry takes slightly longer and is a bit more expensive than wet
- Operational doses are smaller in dry (use of teleoperated tools)
- Secondary wastes are higher in wet
- Uncertainties and accident risks are higher in wet

Optioneering for Level 3: conceptual design

24

Agenda

- Introduction
- Latest reactor internals segmentation projects across Europe
- Graphite plant dismantling expertise
- Waste storage and disposal facilities
- Conclusions

© 2018 Westinghouse Electric Company LLC. All Rights Reserved.

Westinghouse Experience in Interim Waste storage and Disposal facilities

Centralized Interim Storage for SNF, Spain

Comanche Peak SNF storage facility , USA

El Cabril LILW Repository, Spain

 Detailed facility design, licensing support, safety analysis report

Engineering and construction for a mile long heavy haul road and on-site SNF storage facility at the two unit PWR located in Texas Design, licensing, construction supervision and operational support

Conclusions

- Westinghouse brings more than 30 years of proven experience in reactor dismantling on different types of reactors (PWR's, BWR's, GCR's, Sodium).
- Westinghouse has currently on-going segmentation contracts on 13 reactors in Europe.
- Westinghouse has dismantled the first graphite plant (Fort St Vrain) and continues to be involved in other similar reactors (e.g. Vandellós I).
- Westinghouse has developed skills for performing optioneering studies and selecting the optimum dismantling scenario.
- Westinghouse has also a deep knowledge in designing interim waste storage and disposal facilities.
- Westinghouse is used to collaborate with local partners.

Thank You for your Attention... Any Questions?

